整流二极管规格 昆山奇沃电子有限公司
浏览次数:41次
- 产品规格:
- 发货地:江苏省苏州昆山市
关键词
整流二极管规格
详细说明
二极管是常用的电子元件之一,它大的特性就是单向导电,也就是电流只可以从二极管的
一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由
二极管来构成的,其原理都很简单,正是由于二极管等元件的发明,才有我们现 在丰富多彩
的电子信息世界的诞生,既然二极管的作用这么大那么我们应该如何去检测这个元件呢,其实
很简单只要用万用表打到电阻档测量一下反向电阻如果很小就说明这个二极管是坏的,反向电
阻如果很大这就说明这个二极管是好的。对于这样的基础元件我们应牢牢掌握住他的作用原理
以及基本电路,这样才能为以后的电子技术学习打下良好的基础
晶体二极管一般可用到十万小时以上。但是如果使用不合理,他就不能充分发挥作用,甚至很快地被损坏。要合理地使用二极管,必须掌握他的主要参数,因为参数是反应质量和特性的。
高工作频率fM(MC)----二极管能承受的高频率。通过PN结交流电频率高于此值,二极管接不能正常工作。
高反向工作电压VRM(V)----二极管长期正常工作时,所允许的高反压。若越过此值,PN结就有被击穿的可能,对于交流电来说,高反向工作电压也就是二极管的高工作电压。
大整流电流IOM(mA)----二极管能长期正常工作时的大正向电流。因为电流通过二极管时就要发热,如果正向电流越过此值,二极管就会有烧坏的危险。所以用二极管整流时,流过二极管的正向电流(既输出直流)不允许超过大整流电流
二极管主要的特性是单向导电性,其伏安特性曲线。
⒈正向特性
当加在二极管两端的正向电压(P为正、N为负)很小时(锗管小于0.1伏,硅管小于0.5伏),
管子不导通,处于“截止”状态,当正向电压超过一定数值后,管子才导通,电
二极管伏安特性曲线
二极管伏安特性曲线
压再稍微,电流急剧暗加(见曲线I段)。不同材料的二极管,起始电压不同,硅管为
0.5-0.7伏左右,锗管为0.1-0.3左右。
⒉反向特性
二极管两端加上反向电压时,反向电流很小,当反向电压逐渐增加时,反向电流基本保持不变
,这时的电流称为反向饱和电流(见曲线Ⅱ段)。不同材料的二极管,反向电流大小不同,硅
管约为1微安到几十微安,锗管则可高达数百微安,另外,反向电流受温度变化的影响很大,
锗管的稳定性比硅管差。
⒊击穿特性
当反向电压增加到某一数值时,反向电流急剧,这种现象称为反向击穿。这时的反向电压
称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1
伏到几百伏,甚达数千伏。
⒋频率特性
由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。导致二极管失去单向导电
性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。
二极管重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出
。
正向特性
在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连
接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导
通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门坎电
压”,又称“死区电压”,锗管约为0.1V,硅管约为0.5V)以后,二极管才能真正导通。导通
后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向
压降”。
反向特性
在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流
流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍
然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压到某一数值,
反向电流会急剧,二极管将失去单方向导电特性,这种状态称为二极管的击穿。
早期的真空电子二极管;它是一种能够单向传导电流的电子器件。在半导体二极管内部有一个
PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。一般来讲,
晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间
电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流
和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。
晶体二极管,简称二极管(diode);它只往一个方向传送电流的电子零件。它是一种具有1个
零件号接合的2个端子的器件,具有按照外加电压的方向,使电流流动或不流动的性质。晶体
二极管为一个由p型半导体和n型半导体形成的PN结,在其界面处两侧形成空间电荷层,并建有
自建电场。当不存在外加电压时,由于PN 结两边载流子浓度差引起的扩散电流和自建电场引
起的漂移电流相等而处于电平衡状态
m.qiwodz.b2b168.com
一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由
二极管来构成的,其原理都很简单,正是由于二极管等元件的发明,才有我们现 在丰富多彩
的电子信息世界的诞生,既然二极管的作用这么大那么我们应该如何去检测这个元件呢,其实
很简单只要用万用表打到电阻档测量一下反向电阻如果很小就说明这个二极管是坏的,反向电
阻如果很大这就说明这个二极管是好的。对于这样的基础元件我们应牢牢掌握住他的作用原理
以及基本电路,这样才能为以后的电子技术学习打下良好的基础
晶体二极管一般可用到十万小时以上。但是如果使用不合理,他就不能充分发挥作用,甚至很快地被损坏。要合理地使用二极管,必须掌握他的主要参数,因为参数是反应质量和特性的。
高工作频率fM(MC)----二极管能承受的高频率。通过PN结交流电频率高于此值,二极管接不能正常工作。
高反向工作电压VRM(V)----二极管长期正常工作时,所允许的高反压。若越过此值,PN结就有被击穿的可能,对于交流电来说,高反向工作电压也就是二极管的高工作电压。
大整流电流IOM(mA)----二极管能长期正常工作时的大正向电流。因为电流通过二极管时就要发热,如果正向电流越过此值,二极管就会有烧坏的危险。所以用二极管整流时,流过二极管的正向电流(既输出直流)不允许超过大整流电流
二极管主要的特性是单向导电性,其伏安特性曲线。
⒈正向特性
当加在二极管两端的正向电压(P为正、N为负)很小时(锗管小于0.1伏,硅管小于0.5伏),
管子不导通,处于“截止”状态,当正向电压超过一定数值后,管子才导通,电
二极管伏安特性曲线
二极管伏安特性曲线
压再稍微,电流急剧暗加(见曲线I段)。不同材料的二极管,起始电压不同,硅管为
0.5-0.7伏左右,锗管为0.1-0.3左右。
⒉反向特性
二极管两端加上反向电压时,反向电流很小,当反向电压逐渐增加时,反向电流基本保持不变
,这时的电流称为反向饱和电流(见曲线Ⅱ段)。不同材料的二极管,反向电流大小不同,硅
管约为1微安到几十微安,锗管则可高达数百微安,另外,反向电流受温度变化的影响很大,
锗管的稳定性比硅管差。
⒊击穿特性
当反向电压增加到某一数值时,反向电流急剧,这种现象称为反向击穿。这时的反向电压
称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1
伏到几百伏,甚达数千伏。
⒋频率特性
由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。导致二极管失去单向导电
性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。
二极管重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出
。
正向特性
在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连
接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导
通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门坎电
压”,又称“死区电压”,锗管约为0.1V,硅管约为0.5V)以后,二极管才能真正导通。导通
后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向
压降”。
反向特性
在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流
流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍
然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压到某一数值,
反向电流会急剧,二极管将失去单方向导电特性,这种状态称为二极管的击穿。
早期的真空电子二极管;它是一种能够单向传导电流的电子器件。在半导体二极管内部有一个
PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。一般来讲,
晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间
电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流
和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。
晶体二极管,简称二极管(diode);它只往一个方向传送电流的电子零件。它是一种具有1个
零件号接合的2个端子的器件,具有按照外加电压的方向,使电流流动或不流动的性质。晶体
二极管为一个由p型半导体和n型半导体形成的PN结,在其界面处两侧形成空间电荷层,并建有
自建电场。当不存在外加电压时,由于PN 结两边载流子浓度差引起的扩散电流和自建电场引
起的漂移电流相等而处于电平衡状态
m.qiwodz.b2b168.com