供应二极管组 昆山奇沃电子有限公司
浏览次数:78次
- 产品规格:
- 发货地:江苏省苏州昆山市
关键词
二极管组
详细说明
主要参数
用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:
1、大整流电流IF
是指二极管长期连续工作时,允许通过的大正向平均电流值,其值与PN结面积及外部散热条件等有关。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为141左右,锗管为90左右)时,就会使管芯过热而损坏。所以在规定散热条件下,二极管使用中不要超过二极管大整流电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。
2、高反向工作电压Udrm
加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。
3、反向电流Idrm
反向电流是指二极管在常温(25℃)和高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10℃,反向电流一倍。例如2AP1型锗二极管,在25℃时反向电流若为250uA,温度升高到35℃,反向电流将上升到500uA,依此类推,在75℃时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25℃时反向电流仅为5uA,温度升高到75℃时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。
4.动态电阻Rd
二极管特性曲线静态工作点Q附近电压的变化与相应电流的变化量之比。
5高工作频率Fm
Fm是二极管工作的上限频率。因二极管与PN结一样,其结电容由势垒电容组成。所以Fm的值主要取决于PN结结电容的大小。若是超过此值。则单向导电性将受影响。
6,电压温度系数αuz
αuz指温度每升高一摄氏度时的稳定电压的相对变化量。uz为6v左右的稳压二极管的温度稳定性较好
二极管是常用的电子元件之一,它大的特性就是单向导电,也就是电流只可以从二极管的一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由二极管来构成的,其原理都很简单,正是由于二极管等元件的发明,才有我们现 在丰富多彩的电子信息世界的诞生,既然二极管的作用这么大那么我们应该如何去检测这个元件呢,其实很简单只要用万用表打到电阻档测量一下反向电阻如果很小就说明这个二极管是坏的,反向电阻如果很大这就说明这个二极管是好的。对于这样的基础元件我们应牢牢掌握住他的作用原理以及基本电路,这样才能为以后的电子技术学习打下良好的基础
晶体二极管一般可用到十万小时以上。但是如果使用不合理,他就不能充分发挥作用,甚至很快地被损坏。要合理地使用二极管,必须掌握他的主要参数,因为参数是反应质量和特性的。
高工作频率fM(MC)----二极管能承受的高频率。通过PN结交流电频率高于此值,二极管接不能正常工作。
高反向工作电压VRM(V)----二极管长期正常工作时,所允许的高反压。若越过此值,PN结就有被击穿的可能,对于交流电来说,高反向工作电压也就是二极管的高工作电压。
大整流电流IOM(mA)----二极管能长期正常工作时的大正向电流。因为电流通过二极管时就要发热,如果正向电流越过此值,二极管就会有烧坏的危险。所以用二极管整流时,流过二极管的正向电流(既输出直流)不允许超过大整流电流
特性曲线
与PN结一样,二极管具有单向导电性。硅二极管典型伏安
特性曲线(图)。在二极管加有正向电压,当电压值较小时,电流极小;当电压超过0.6V时,电流开始按指数规律,通常称此为二极管的开启电压;当电压达到约0.7V时,二极管处于完全导通状态,通常称此电压为二极管的导通电压,用符号UD表示。
对于锗二极管,开启电压为0.2V,导通电压UD约为0.3V。在二极管加有反向电压,当电压值较小时,电流极小,其电流值为反向饱和电流IS。当反向电压超过某个值时,电流开始急剧,称之为反向击穿,称此电压为二极管的反向击穿电压,用符号UBR表示。不同型号的二极管的击穿电压UBR值差别很大,从几十伏到几千伏。
晶体二极管为一个由p型半导体和n型半导体形成的pn结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于pn结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,pn结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。pn结的反向击穿有齐纳击穿和雪崩击穿之分
m.qiwodz.b2b168.com
用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:
1、大整流电流IF
是指二极管长期连续工作时,允许通过的大正向平均电流值,其值与PN结面积及外部散热条件等有关。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为141左右,锗管为90左右)时,就会使管芯过热而损坏。所以在规定散热条件下,二极管使用中不要超过二极管大整流电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。
2、高反向工作电压Udrm
加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。
3、反向电流Idrm
反向电流是指二极管在常温(25℃)和高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10℃,反向电流一倍。例如2AP1型锗二极管,在25℃时反向电流若为250uA,温度升高到35℃,反向电流将上升到500uA,依此类推,在75℃时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25℃时反向电流仅为5uA,温度升高到75℃时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。
4.动态电阻Rd
二极管特性曲线静态工作点Q附近电压的变化与相应电流的变化量之比。
5高工作频率Fm
Fm是二极管工作的上限频率。因二极管与PN结一样,其结电容由势垒电容组成。所以Fm的值主要取决于PN结结电容的大小。若是超过此值。则单向导电性将受影响。
6,电压温度系数αuz
αuz指温度每升高一摄氏度时的稳定电压的相对变化量。uz为6v左右的稳压二极管的温度稳定性较好
二极管是常用的电子元件之一,它大的特性就是单向导电,也就是电流只可以从二极管的一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由二极管来构成的,其原理都很简单,正是由于二极管等元件的发明,才有我们现 在丰富多彩的电子信息世界的诞生,既然二极管的作用这么大那么我们应该如何去检测这个元件呢,其实很简单只要用万用表打到电阻档测量一下反向电阻如果很小就说明这个二极管是坏的,反向电阻如果很大这就说明这个二极管是好的。对于这样的基础元件我们应牢牢掌握住他的作用原理以及基本电路,这样才能为以后的电子技术学习打下良好的基础
晶体二极管一般可用到十万小时以上。但是如果使用不合理,他就不能充分发挥作用,甚至很快地被损坏。要合理地使用二极管,必须掌握他的主要参数,因为参数是反应质量和特性的。
高工作频率fM(MC)----二极管能承受的高频率。通过PN结交流电频率高于此值,二极管接不能正常工作。
高反向工作电压VRM(V)----二极管长期正常工作时,所允许的高反压。若越过此值,PN结就有被击穿的可能,对于交流电来说,高反向工作电压也就是二极管的高工作电压。
大整流电流IOM(mA)----二极管能长期正常工作时的大正向电流。因为电流通过二极管时就要发热,如果正向电流越过此值,二极管就会有烧坏的危险。所以用二极管整流时,流过二极管的正向电流(既输出直流)不允许超过大整流电流
特性曲线
与PN结一样,二极管具有单向导电性。硅二极管典型伏安
特性曲线(图)。在二极管加有正向电压,当电压值较小时,电流极小;当电压超过0.6V时,电流开始按指数规律,通常称此为二极管的开启电压;当电压达到约0.7V时,二极管处于完全导通状态,通常称此电压为二极管的导通电压,用符号UD表示。
对于锗二极管,开启电压为0.2V,导通电压UD约为0.3V。在二极管加有反向电压,当电压值较小时,电流极小,其电流值为反向饱和电流IS。当反向电压超过某个值时,电流开始急剧,称之为反向击穿,称此电压为二极管的反向击穿电压,用符号UBR表示。不同型号的二极管的击穿电压UBR值差别很大,从几十伏到几千伏。
晶体二极管为一个由p型半导体和n型半导体形成的pn结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于pn结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,pn结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。pn结的反向击穿有齐纳击穿和雪崩击穿之分
m.qiwodz.b2b168.com