MITSUBISHI模块IGBT模块 昆山奇沃电子有限公司

浏览次数:123
  • 产品规格:
  • 发货地:江苏省苏州昆山市
关键词
MITSUBISHI模块IGBT模块
详细说明
方法
IGBT是将强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然新一代功率MOSFET 器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。
MITSUBISHI模块IGBT模块
判断极性
首先将万用表拨在R×1KΩ挡,用万用表测量时,若某一极与其它两极阻值为无穷大,调换表笔后该极与其它两极的阻值仍为无穷大,则判断此极为栅极(G )其余两极再用万用表测量,若测得阻值为无穷大,调换表笔后测量阻值较小。在测量阻值较小的一次中,则判断红表笔接的为集电极(C);黑表笔接的为发射极(E)。
MITSUBISHI模块IGBT模块
U-IGBT
U(沟槽结构)--IGBT是在管芯上刻槽,芯片元胞内部形成沟槽式栅极。采用沟道结构后,可进一步缩小元胞尺寸,减少沟道电阻,进步电流密度,制造相同额定电流而芯片尺寸少的产品。现有多家公司生产各种U—IGBT产品,适用低电压驱动、表面贴装的要求。
MITSUBISHI模块IGBT模块
阻断与闩锁
当集电极被施加一个反向电压时, J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。 第二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。
当栅极和发射极短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制,此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。
IGBT在集电极与发射极之间有一个寄生PNPN晶闸管(如图1所示)。在条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别:
当晶闸管全部导通时,静态闩锁出现,只在关断时才会出现动态闩锁。这一现象严重地限制了安全操作区。为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施:防止NPN部分接通,分别改变布局和掺杂级别,降低NPN和PNP晶体管的总电流增益。此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。
m.qiwodz.b2b168.com
联系我们

在线客服: 5178133

联系人:林志胜

联系电话:18962647678